前言

台灣因位居颱風的正衝,也是地震頻繁地帶,所以橋梁常遭受地震、洪水、土石流等災害之威脅;復以氣候潮溼、高溫、近海,是個容易腐蝕的環境,加上超大的交通負荷與不當的超載,使得橋梁劣化或損害情況日趨嚴重。其中鋼結構橋梁由於具有重量輕、製作加工容易、施工工期短等優點,近年來數目日益增加,鋼橋相關之劣化現象與維修補強需求亦相繼浮現。因此,鋼橋檢測、評估與維修補強相關準則之建立,已成為現今橋梁管理之迫切課題。

近年來橋梁最小生命週期成本之概念逐漸受到重視,此概念顧名思義即是視橋梁是有「生命」的,將橋梁工程之規劃、設計、發包、施工、維護、管理、拆除、重建等當作為一個整體來考量其服務年限,再以「永續發展」的觀點,將服務年限內所需要的經費與效益做整體規劃,使生命週期成本達到最小化。因橋梁的生命週期成本不僅包含初期成本,亦包含拆除與重建成本,橋梁維護管理之重要性相對提高,對既有橋梁進行定期檢測及適當維修補強工作,儼然成為橋梁工程永續發展不可或缺的一環。而橋梁現況之檢測評估及維修補強建議,往往較為主觀,不同工程人員之判定結果會有所差異,為使工程人員在從事現場檢測及維修工作時有所依據,並有較為客觀之準則可依循,確有必要訂定一套橋梁檢測、評估、維修及補強之規範。

目前國內橋梁維護管理的理念逐漸提昇,各單位也有其獨立發展之相關橋梁檢測評估手冊、維修養護手冊、維修材料規範及使用手冊等,然所要求的檢測重點、檢測方法及表格並未統一,對於評估及補強亦尚無一致性之參考使用規範,尤其在鋼結構橋梁方面,相關之標準更是貧乏,交通部有鑑於此,於民國九十一年底責由交通部台灣區國道高速公路局承辦「公路鋼結構橋梁之檢測及補強規範(草案)」研究計畫,並於民國九十二年三月委託財團法人中華顧問工程司執行。本規範草案於九十三年四月完成規範草案初稿,同時組成規範草案初審委員會,在歷經十次初審會議與一次規範研討會後完成規範草案定稿。

冀望本規範之完成可讓橋梁主管機關及工程人員有明確之遵循依據,俾利既有 鋼結構橋梁之檢測評估及維修補強工作順利且有效推展,以期增進鋼結構橋梁之耐 久能力,確保橋梁之安全性及使用性,延長國內既有鋼結構橋梁服務年限,達到永 續發展之目標。

目 錄

公路鋼結構橋梁之檢測及補強規範(草案)

第一章	通則1
1.1	適用範圍與規範內容1
1.2	人員資格1
1.3	
第二章	檢測一般規定5
2.1	一般說明
2.2	. 檢測種類
2.3	檢測頻率6
2.4	- 檢測評估系統6
	2.4.1 檢測構件分類10
	2.4.2 檢測評等10
2.5	6 檢測準備作業
	2.5.1 檢測表格11
	2.5.2 檢測工具及設備11
	2.5.5 檢測安全措施12
第三章	經常巡查20
3.1	檢測方法與項目20
3.2	異常現象之處理21
第四章	定期檢測24
4.1	定期檢測準備作業24
4.2	25 檢測方法與項目
4.3	- 檢測判定標準26
	4.3.1 鋼結構物劣化程度判定標準26
	4.3.2 混凝土結構物劣化程度判定標準29
	4.3.3 支承裝置及防落設施劣化程度判定標準30
	4.3.4 伸縮縫劣化程度判定標準30
	4.3.5 摩擦層劣化程度判定標準30
	4.3.6 結構物沉陷程度判定標準30

	4.3.7 河道變遷影響橋梁程度判定標準	31
	4.3.8 橋梁相關排水設施劣化程度判定標準	32
	4.3.9 其他附屬設施劣化程度判定標準	32
	4.3.10 橋梁安全性及服務性評估與維修急迫性判定標	洋33
4.4	非破壞檢測作業	34
	4.3.1 超音波檢測法	34
	4.3.2 液渗檢測法	35
	4.3.3 磁粒檢測法	36
	4.3.4 渦電流檢測法	37
	4.3.5 射線檢測法	38
第五章	特別檢測	75
5.1	適用 時機	75
5.2		
5.3		
5.4		
5.5		
5.6		
第六章	鋼結構橋梁結構安全評估	79
6.1	一般說明	79
6.2	橋梁承載力評估	79
	6.2.1 分析計算評估法	80
	6.2.2 靜載重試驗	83
	6.2.3 動載重試驗	85
6.3	疲勞安全評估	86
	6.3.1 適用範圍	86
	6.3.2 評估方法	87
	6.3.3 應力差值	91
6.4	耐震能力評估	93
6.5	耐洪能力評估	93
第七章	維修與補強	99
7.1	一般說明	99
	維修與補強原則	

7.3	維修與補強工法100
7.4	疲勞損傷維修與補強105
7.5	鋼橋防蝕系統維修105
	7.5.1 塗裝劣化維修106
	7.5.2 熱浸鍍鋅劣化維修108
	7.5.3 鋁鋅熔射劣化維修108
7.6	支承維修與補強109
	7.6.1 支承維修與補強工法109
	7.6.2 支承之維修110
	7.6.3 支承之置换111
7.7	伸縮縫之維修與置換112
參考文獻	R-1
附錄一	專家學者座談會暨辦理情形A1-1
附錄二	初審會審查意見暨辦理情形A2-1
附錄三	研討會辦理情形A3-1
附錄四	鋼橋檢測驗證A4-1

表目錄

表	2.4.1	檢測之構件分類	13
表	2.4.2	劣化狀況之檢測評等準則	13
表	2.5.1	橋梁資料表	14
表	3.1.1	經常巡查表	23
表	4.2.1	定期檢測表	39
表	4.2.2	檢測總表	44
表	4.3.1	鋼結構物之劣化程度判定標準	45
表	4.3.2	混凝土結構物之劣化程度判定標準	46
表	4.3.3	支承及防落設施之劣化程度判定標準	47
表	4.3.4	伸縮縫之劣化程度判定標準	48
表	4.3.5	摩擦層之劣化程度判定標準	49
表	4.3.6	結構物沉陷程度之判定標準	50
表	4.3.7	結構物之沉陷異常值	50
表	4.3.8	河道變遷影響橋梁程度判定標準	····51
表	4.3.9	排水設施之劣化程度判定標準	····51
表	4.3.10	0 附屬設施之劣化程度判定標準	52
表	4.3.1	1 劣化現象對整體結構安全性及服務功能性之評估值	53

解說表目錄

表 C1.1.1	台灣道路橋梁主管與管理機關	4
表 C2.4.1	各組合構件對橋梁重要性權重參考表	18
表 C2.5.1	攜帶工具及設備檢視表	19
	鋼橋型式對應之損傷項目	
表 C4.3.2	結構物沉陷測定位置數	60
表 C4.4.1	破壞與非破壞檢測技術種類及適用之材料	···61
表 C4.4.2	非破壞性檢測對鋼材料檢測之適用性	···61
表 C4.4.3		
表 C4.4.4	鋼箱型梁橋之上部結構檢測	63
表 C4.4.5	鋼床鈑梁橋之上部結構檢測	64
表 C4.4.6	桁架橋之上部結構檢測	65
	鋼橋墩之檢測	
表 C6.2.1	靜載重及活載重相關之係數	94
表C6.2.2	靜載重加成係數 γ_D 及活載重加成係數 γ_L	94
	衝擊係數 I	
表 C6.2.4	活載重之折減係數	94
表 C6.2.5	鋼橋強度折減係數φ	95
	鋼橋載重評估之極限狀態及載重係數	
表 C6.2.7	系統係數 ϕ_{s} ······	96
表 C6.3.1	構造細節常數與極限應力差值(AASHTO 1990)	96
表 C6.3.2	與應力差值相關之載重係數 (AASHTO LRFR 2003)	97
表C6.3.3	疲勞年限之抵抗係數, R_R (AASHTO LRFR 2003)	97
表 C6.3.4	LRFD 構造細節常數 (AASHTO 2002)	98
表 C6.3.5	計算側向分佈係數之係數 D (AASHTO 1990)	98
表 C6.3.2	與應力差值相關之載重係數 (AASHTO LRFR 2003)	97
表 C7.3.1	維修工法摘要表	· 113
表 C7.3.2	補強工法摘要表	· 114
表 C7.5.1	塗裝劣化原因及其處理對策	· 115
表 C7.5.2	表面處理等級及適用標準(日本道路協會)	·116
表 C7.5.3	各種塗料重漆之適合性	·116
表 C7.5.4	塗裝系統之綜合評估	·117
表 C7.5.5	銹蝕之評分標準	· 117
表 C7.5.6	剝落之評分標準	· 117
表 C7.5.7	龜裂之評分標準	· 117
表 C7.5.8	白華化之評分標準	·118
表 C7.5.9	環境條件之評分標準	.118

表 C7.6.1	變形之種類與其對應之主要原因118
解說圖目	錄
回 (74.2.1	
	裂縫現象之示意圖67
圖 C4.3.2	變形之現象示意圖67
圖 C4.3.3	螺栓鬆動或脫落現象68
圖 C4.3.4	I型鋼梁主要之劣化損傷69
圖 C4.3.5	箱型鋼梁主要之劣化損傷70
圖 C4.3.6	鋼床版主要之劣化損傷71
	桁架橋主要之劣化損傷72
圖 C4.3.8	鋼拱橋主要之劣化損傷73
圖 C4.3.9	鋼橋墩主要之劣化損傷74
圖 C6.3.1	疲勞貨車示意圖98
	選擇塗裝維修方法之流程圖119
	决定支承維修與補強工法之流程圖120